Bài giảng Hình học Lớp 9 - Tiết 44: Tứ giác nội tiếp
Bạn đang xem tài liệu "Bài giảng Hình học Lớp 9 - Tiết 44: Tứ giác nội tiếp", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_hinh_hoc_lop_9_tiet_44_tu_giac_noi_tiep.pdf
Nội dung text: Bài giảng Hình học Lớp 9 - Tiết 44: Tứ giác nội tiếp
- Tiết 44: TỨ GIÁC NỘI TIẾP 1. Khái niệm tứ giác nội tiếp: ?1 b) Vẽ một đường tròn tâm I rồi vẽ a) Vẽ đường tròn tâm O rồi vẽ một tứ giác có ba đỉnh nằm trên một tứ giác có tất cả các đỉnh đường tròn còn đỉnh thứ tư thì nằm trên đường tròn đó. không. Q B A M I O M P Q C I N D N P Tứ giác ABCD nội tiếp Tứ giác MNPQ không nội đường tròn tâm O tiếp đường tròn tâm I
- Tiết 44: TỨ GIÁC NỘI TIẾP 1. Khái niệm tứ giác nội tiếp Định nghĩa: Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn. (gọi tắt là tứ giác nội tiếp).
- Hãy tìm 3 tứ giác nội tiếp và 2 tứ giác không nội tiếp trong hình vẽ sau: Các tứ giác nội tiếp là: ABDE ; ABCD ; ACDE. Các tứ giác không nội tiếp là: AFDE ; AIDE.
- Tiết 44: TỨ GIÁC NỘI TIẾP 1. Khái niệm tứ giác nội tiếp: Định nghĩa: A, B, C, D (O) ABCD là tứ giác nội tiếp 2. Định lí. A B Trong một tứ giác nội tiếp, tổng O số đo hai góc đối nhau bằng 1800 C D
- Bài tập 53. Biết ABCD nội tiếp. Hãy điền vào ô trống trong bảng sau. Trường hợp 1) 2) 3) 4) 5) 6) Góc A 800 750 600 1060 950 B 700 1050 400 650 820 C 1000 1050 1200 1800 740 850 D 1100 750 1800 1400 1150 980 0100 80 ; 000 180
- Tiết 44: TỨ GIÁC NỘI TIẾP 1) Khái niệm về tứ giác nội tiếp A, B, C, D (O) ABCD là tứ giác nội tiếp 2) Định lí 3) Định lí đảo 0 A +C=180 Tứ giác ABCD có 0 Tứ giác ABCD nội tiếp được. B +D=180
- Cho tam giác ABC với H là trực tâm. Kể tên vài tứ giác nội tiếp trong hình vẽ sau. (Hãy nêu lý do). A o2 M L H o 1 o3 B C K
- BÀI TẬP Trong các hình vẽ dưới đây, tứ giác nào là tứ giác nội A N tiếp? Vì sao? G 80 A M C F H D O K 100 3) E D Q P 1) I 2) E 4) P B Q F H A A x 120 60 D C K 60 5) R Q 8) H 6) B 7) N D
- DẤU HIỆU NHẬN BIẾT TỨ GIÁC NỘI TIẾP B 1.Tứ giác có bốn đỉnh cách đều A O một điểm. C D B B 2. Tứ giác có tổng hai góc 800 A . o A C đối nhau bằng 180 . O O 1000 D C D B 3.Tứ giác có hai đỉnh kề nhau B A cùng nhìn cạnh chứa hai đỉnh A O D C còn lại dưới một góc D O C B 4. Tứ giác có góc ngòai tại A một đỉnh bằng góc trong tại α O α đỉnh đối của đỉnh đó. D C
- HƯỚNG DẪN VỀ NHÀ - Nắm định nghĩa, định lí về tứ giác nội tiếp. - Bài tập về nhà: làm tiếp tục bài 53, 54, 55, 56, 59 trang 89 – SGK.