Bài tập ôn tập môn Toán Lớp 8 - Trường THCS Trưng Vương

doc 5 trang Đăng Bình 11/12/2023 630
Bạn đang xem tài liệu "Bài tập ôn tập môn Toán Lớp 8 - Trường THCS Trưng Vương", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docbai_tap_on_tap_mon_toan_lop_8_truong_thcs_trung_vuong.doc

Nội dung text: Bài tập ôn tập môn Toán Lớp 8 - Trường THCS Trưng Vương

  1. TRƯỜNG THCS TRƯNG VƯƠNG BÀI TẬP ÔN TẬP (Từ 18/2 đến 29/2) NHÓM TOÁN 8 (DÀNH CHO HỌC SINH LÀM Ở NHÀ) A/Đại số: I/Lý thuyết: -Học sinh ôn tập lại phần phân thức đại số và các phép tính cộng, trừ, nhân chia phân thức -Học sinh ôn tập lại phần biểu thức hữu tỉ,biến đổi biểu thức hữu tỉ,ĐKXĐ,Tính giá trị biểu thức -Học sinh ôn lại phần phương trình một ẩn và phương trình bậc nhất. II/ Bài tập: Bài 1: Tính : x2 9 3 x 2x 2y a) : b) (với x ≠ y) 2x 6 2 x y x y x 15 2 c) x2 9 x 3 Bài 2: Rút gọn: 3 2 a) x x b) x 3xy 3x 3 x2 9y2 Bài 3: Thực hiện phép tính. x 9 6x 6x 3 4x 2 1 a) ; b). : . x 3 x 2 3x x 3x 2 2 Bài 4: Cho phân thức A = x 2x 1 x2 1 a) Với giá trị nào của x thì giá trị của phân thức được xác định? b) Rút gọn A. c) Tính giá trị của A tại x = -2 . d) Tìm các giá trị nguyên của x để A có giá trị nguyên. Bài 5: Thực hiện phép tính.: 1 1 1 1 x(x 1) (x 1)(x 2) (x 2)(x 3) (x 2013)(x 2014) 6x2 y3 x2 4x 4 Bài 6: Rút gọn : a) b) 8x3 y2 3x 6 7x 6 3x 6 5x 10 4 2x Bài 7: Thực hiện phép tính: a) b). 2x(x 7) 2x2 14x 4x 8 x 2 x2 4x 4 Bài 8: Cho phân thức A = x2 4 a) Tìm điều kiện của x để giá trị của phân thức được xác định. b) Rút gọn A c) Tính giá trị của A tại x = -3 . d) Tìm các giá trị nguyên của x để A có giá trị nguyên. 2 4 2 1 Bài 9: Rút gọn biểu thức : 2 : 2 x 2 x 4x 4 x 4 2 x
  2. 6x2 y3 x2 4x 4 Bài 10: Rút gọn : a) b) 8x3 y2 3x 6 7x 6 3x 6 5x 10 4 2x Bài 11:Thực hiện phép tính: a) b). 2x(x 7) 2x2 14x 4x 8 x 2 3 2 Bài 12: Cho biểu thức : A = x 2x x x3 x a . Với giá trị nào của x thì giá trị của phân thức A xác định . b . Rút gọn biểu thức A . c . Tìm giá trị của x để giá trị của A = 2 . 1 1 1 Bài 13: Tính: x y y z y z z x z x x y Bài 14. Thực hiện các phép tính: x 12 6 1 1 a) b) 6x 36 x2 6x x x 1 Bài 3Giải các phương trình sau bằng cách đưa về dạng ax + b = 0: 1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x 2.a)5 – (x – 6) = 4(3 – 2x)b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4) c)7 – (2x + 4) = – (x + 4) d)(x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3 3.a)1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x) c)2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7 e)3 + 2,25x +2,6 = 2x + 5 + 0,4x f)5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42 5x 2 5 3x 10x 3 6 8x 4. a) b) 1 3 2 12 9 3 13 7 20x 1,5 c)2 x 5 x d) x 5(x 9) 5 5 8 6 7x 1 16 x 5x 6 e) 2x f) 4(0,5 1,5x) 6 5 3 B/ HÌNH HỌC I/lý thuyết: Học sinh ôn lại phần định lí Talet trong tam giác đã học
  3. II/Bài tập Bài 1: 1/ Điền vào chỗ trống đoạn thẳng thích hợp và ghi lí do. A AE FC Biết EF//BC a. b. EB AF AN c. AM E F EN EF N d. e. BM BC AE f . AB B M C 2/ Tìm số đo x trong các hình vẽ sau: C DE//AC E D 10 B 2,5 4 A M N 8 E x x+2 x 12 5 E D F B 4 D 6 A 6 DE//AC C Bài 2: Cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đường chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. Chứng minh rằng I là trung điểm của AB, K là trung điểm của CD. Bài 3: Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB Theo thứ tự ở M, N, K. Chứng minh rằng: a / DM2 = MN.MK DM DM b / + = 1 DN DK Bài 4: Cho tam giác ABC .Qua trọng tâm G, kẻ đường thẳng d cắt các cạnh AB, AC BE CF theo thứ tự ở E và F. Chứng minh rằng: + = 1 AE AF Bài 5: Cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC. a/ Chứng minh rằng: IK//AB b/ Đường thẳng IK cắt AD, BC theo thứ tự tại E, F. Chứng minh rằng: EI=IK=KF Bài 6: Cho hình bình hành ABCD, điểm E thuộc cạnh AB, điểm F thuộc cạnh AD. Đường thẳng đi qua D và song song với EF cắt AC ở I. Đường thẳng đi qua B và song song với EF cắt AC tại K. Chứng minh rằng: a / AI = CK AB AD AC b / + = AE AF AN
  4. Bài 7: Cho hình bình hành ABCD. Một đường thẳng d đi qua A cắt đường chéo BD tại P, cắt các đường thẳng BC và CD lần lượt tại M và N. Chứng minh rằng: a/ BM.DN không đổi. 1 1 1 b/ + = AM AN AP